重要更正第1号:过渡矩阵和坐标变换推导

尽管《机器学习数学基础》这本书,耗费了比较长的时间和精力,怎奈学识有限,错误难免。因此,除了在专门的网页( 勘误和修订 )中发布勘误和修订内容之外,对于重大错误,我还会以专题的形式发布,并做出更多的相关解释。

更欢迎有识之士、广大读者朋友,指出其中的错误。非常感谢大家的帮助。

在《机器学习数学基础》第29页到第30页,推导过渡矩阵和坐标变换的时候,原文有一些错误。下面将推导过程重新编写如下,并且增加一些更详细的说明。此说明没有写入原文,是为了协助理解这段推导而作。

针对性的修改,请参阅:勘误与修订


表示列向量) 是某个向量空间的一个基,则该空间中一个向量 可以描述为:

(1.3.4)​

其中的 即为向量 在基 坐标

如果有另外一个基 表示列向量),向量 又描述为:

(1.3.5)

那么,同一个向量空间的这两个基有没有关系呢?有。不要忘记,基是一个向量组,例如基 中的每个向量也在此向量空间,所以可以用基 线性表出,即:

以矩阵(这里提前使用了矩阵的概念,是因为本书已经在前言中声明,不假定读者完全没有学过高等数学。关于矩阵的更详细内容,请参阅第2章)的方式,可以表示为:

(1.3.6)

其中:

称为基 向基 过渡矩阵。显然,过渡矩阵实现了一个基向另一个基的变换。

在同一个向量空间,由基 向基 的过渡矩阵是 ,则:

根据(1.3.5)式,可得:

(1.3.4)式 和(1.3.5)式描述的是同一个向量,所以:

如果写成矩阵形式,即:

(1.3.7)

这个结果表示了在同一个向量空间中,向量在不同基下的坐标之间的变换关系,称为坐标变换公式

在某个向量空间中,由基 向基 的过渡矩阵是 。某向量在基 的坐标是 ,在基 的坐标是 ,这两组坐标之间的关系是:


以上错误,是我在录制《机器学习数学基础》的视频课程时候,讲到了这里,发现的。现在深刻体会到:教,然后知不足。教学相长,认真地研究教学,也是自我提升。著名物理学家费恩曼有一种非常好的学习方法,就是将要学的东西,讲给别人听,看看是否能讲明白。

作者: 老齐
链接: http://math.itdiffer.com/big_bug01.html
来源: 机器学习
本文原创发布于「机器学习」,转载请注明出处,谢谢合作!

http://math.itdiffer.com/images/0.jpg

results matching ""

    No results matching ""