价值250亿美元的特征向量——Google背后的线性代数

原文标题:THE nk, 1\le k\le nxkkx_kx_j\gt x_kjkx_j=0jx_kkx_1=2,x_2=1,x_3=3,x_4=23142kk141334214jj1x_1=x_3+x_4x_3x_4x_1x_3=x_1+x_2+x_4jn_jkkx_j/n_jx_jnL_k\subset{1,2,\cdots,n}kkx_k=\sum{j\in Lk}\frac{x_j}{n_j}\tag{2.1}n_jjj\in L_kn_jjk1343142x_1=x_3/1+x_4/2x_2=x_1/3, x_3=x_1/3+x_2/2+x_4/2, x_4=x_1/3+x_2/2\begin{split}x_1 &= x_3/1+x_4/2\x_2 &= x_1/3 \ x_3&=x_1/3+x_2/2+x_4/2\ x_4&=x_1/3+x_2/2\end{split}\pmb{x}=\begin{bmatrix}x_1\x_2\x_3\x_4\end{bmatrix}\pmb{Ax}=\pmb{x}\pmb{A}\pmb{A}=\begin{bmatrix}0&0&1&\frac{1}{2}\\frac{1}{3}&0&0&0\\frac{1}{3}&\frac{1}{2}&0&\frac{1}{2}\\frac{1}{3}&\frac{1}{2}&0&0\end{bmatrix}\tag{2.2}\pmb{A}\pmb{x}1\pmb{A}\pmb{A}1nji\pmb{A}A{ij}=1/njA{ij}=0\pmb{A}j1/n_j011\pmb{A}1\pmb{A}n\times n\pmb{e}n1\pmb{A}^T\pmb{e}=\pmb{e}1\pmb{A}^T\pmb{A}\pmb{A}^T\pmb{A}1V_1(\pmb{A})\pmb{A}1V_1(\pmb{A})1\pmb{x}\sum_ix_i=1\pmb{A}W_112W_23、4、5\pmb{A}=\begin{bmatrix}0&1&0&0&0\1&0&0&0&0\0&0&0&1&\frac{1}{2}\0&0&1&0&\frac{1}{2}\0&0&0&0&0\end{bmatrix}V_1(\pmb{A})2\pmb{x}=\begin{bmatrix}\frac{1}{2}\\frac{1}{2}\0\0\0\end{bmatrix},\pmb{y}=\begin{bmatrix}0\0\\frac{1}{2}\\frac{1}{2}\0\end{bmatrix}V_1(\pmb{A})\frac{3}{4}\pmb{x}+\frac{1}{4}\pmb{y}=\begin{bmatrix}\frac{3}{8}\\frac{3}{8}\\frac{1}{8}\\frac{1}{8}\0\end{bmatrix}\dim(V_1(\pmb{A}))\gt1WrW_1,W_2,\cdots,W_r\dim(V_1(\pmb{A}))\ge r\pmb{x}\in V_1(\pmb{A})\sum_ix_i=1WrW_1,W_2,\cdots,W_r$$ ,那么将无法找到一个可以比较一个子网和另外一个子网中页面的页面分数。

参考文献

[1]. A. Berman and R. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Academic Press, NewYork, 1979.

[2]. M. W. Berry and M. Browne, Understanding Search Engines: Mathematical Modeling and Text Retrieval, Second Edition, SIAM, Philadelphia, 2005.

[3]. M. Bianchini, M. Gori, and F. Scarselli, Inside PageRank, ACM Trans. Internet Tech., 5 (2005), pp. 92–128.

[4]. S. Brin and L. Page, The anatomy of a large-scale hypertextual web search engine, http://www−db.stanford.edu/∼backrub/google.html (accessed August 1, 2005).

[5]. A. Farahat, T. Lofaro, J. C. Miller, G. Rae, and L.A. Ward, Authority Rankings from HITS, PageRank,and SALSA: Existence, Uniqueness, and Effect of Initialization, SIAM J. Sci. Comput., 27 (2006), pp.1181-1201.

[6]. A. Hill, Google Inside Out, Maximum PC, April 2004, pp. 44-48.

[7]. S. Kamvar, T. Haveliwala, and G. Golub, Adaptive methods for the computation of PageRank, Linear Algebra Appl., 386 (2004), pp. 51–65.

[8]. A. N. Langville and C. D. Meyer, A survey of eigenvector methods of web information retrieval, SIAMReview, 47 (2005), pp. 135-161.

[9]. A. N. Langville and C. D. Meyer, Deeper inside PageRank, Internet Math., 1 (2005), pp. 335–380.

[10]. C. D. Meyer, Matrix Analysis and Applied Linear Algebra, SIAM, Philadelphia, 2000.

[11]. Cleve Moler, The world’s largest matrix computation, http://www.mathworks.com/company/newsletters/newsnotes/clevescorner/oct02cleve.html (accessed August 1, 2005).

[12]. Mostafa, J., Seeking better web searches, Sci. Amer., 292 (2005), pp. 66-73.

[13], Sara Robinson, The Ongoing search for efficient web search algorithms, SIAM News, 37 (Nov 2004).

[14]. Ian Rogers, The Google Pagerank algorithm and how it works, http://www.iprcom.com/papers/pagerank/ (accessed August 1, 2005).

[15]. W. J. Stewart, An Introduction to the Numerical Solution of Markov Chains, Princeton University Press,Princeton, 1994.

作者: 老齐
链接: http://math.itdiffer.com/google.html
来源: 机器学习
本文原创发布于「机器学习」,转载请注明出处,谢谢合作!

http://math.itdiffer.com/images/0.jpg

results matching ""

    No results matching ""